# What is the Cartesian view

## Understand math 5, textbook

103 TECHNOLOGY COMPACT R TECHNOLOGY COMPACT GEOGEBRA CASIO CLASS PAD IIA = Enter (x 1 y) in Cartesian coordinates Algebra view: Input: A = (x, y) ENTER Graphics view: Output ¥ Point A = (x 1 y) Icon bar - Main - k - Math2 - 6 1st input field: x 2nd input field: y E Output ¥ (x 1 y) A = [r 1 φ] enter in polar coordinates Algebra view: Input: A = (r; φ °) ENTER Graphics view: Output ¥ Point A = [r 1 φ] NOTE: Always enter φ with the unit of measurement °. Icon bar - Main - k - Math2 - 6 1st input field: rk - Math3 - ^ 2nd input field: φ) Conversion A = [r 1 φ] ¥ A = (x 1 y) Algebra view: Input: A = (r ; φ °) ENTER context menu of A - click Cartesian coordinates Output ¥ point A in Cartesian coordinates Icon bar - Main - k - Math2 - 6 1st input field: rk - Math3 - ^ 2nd input field: φ) E output ¥ point A in Cartesian Coordinate conversion A = (x 1 y) ¥ A = [r 1 φ] Algebra view: Input: A = (x, y) ENTER context menu for A - click on polar coordinates Output ¥ point A in polar coordinates NOTE: For the output of φ see Exercise 5.07-4! Icon bar - Main - Status bar - Decimal - k command catalog - toPol - Input - Math2 - 6 1st input field: x 2nd input field: y I output ¥ point A in polar coordinates (see 5.07-4!) Determine the area of ​​a drawn triangle Graphics view : Tool - Select triangle Algebra view: Output ¥ Area of ​​the triangle Icon bar - Menu - Geometry - Draw triangle (see page 84!) - Mark pages Toolbar - u - E Output in the measurement window ¥ Area of ​​the triangle EXERCISES T 5.01 Draw the points A = (3 1 5) and B = [3 1 40 °] in a Cartesian coordinate system! T 5.02 In which quadrant is point C = [10 1 135 °]? Calculate the Cartesian coordinates of C! T 5.03 Find the area of ​​the triangle ABC with A = (2 1 5), B = (1 1 0), C = (- 2 1 –7)! Ó TI-Nspire compact u5g3eg O For specific instructions see technology training booklets For testing purposes only - property of the publisher öbv